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-~ The fully nonparametric formulation of the empirical Bayes estimation problem con-
siders m populations characterized by conditional (sampling) distributions chosen indepen-
dently by some unspecified random mechanism. No parametric constraints are imposed
on the family of possible sampling distributions or on the prior mechanism which selects
them. The quantity to be estimated subject to squared-error loss for each population is
defined by a functional T'(F') where F is the population sampling cdf. The empirical Bayes
estimator is based on n iid observations from each population where » > 1. Asymptotically
optimal procecures for this problem typically employ consistent nonparametric estimators

of certain nonlinear conditional expectation functions. In this study a particular projec-

tion pursuit algorithm is used for this purpose. The proposed method is applied to the
estimation of population means for several simulated data sets and one fa./nﬁliar real world

data set. Certain possible extensions are discussed. _<a” ' m s Pl L
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1. Introduction.

The purpose of this paper is to show hcw an old idea may be effectively implemented
using new technology. The old idea is the notion of fully nonparametric empirical Bayes
estimation, which was introduced by the author in a paper (Johns 1957) directly inspired by
the fundamental paper of Robbins (1955). The new technique is computer based projection
pursuit regression analysis.

The fully nonparametric approach to empirical Bayes estimation differs from the origi-
nal Robbins formulation in that it does not require the specification of a parametric family
for the conditional (sampling) distributions of the independent component populatiors.
Neitber formulation makes parametric assumptions about the prior distribution of the
quantity being estimated. This is in contrast to the case of “parametric® empirical Bayss
estimation (see e.g., Efron-Morris, 1975) where parametric models are specified for both
the conditional and prior distributions, and the “restricted” case where the estimators are
constrained to have particular simple form (see Robbins 1983). It should be noted that
the fully nonparametric version of the prcblem requires that at least two observations be
obtained from each component population.

When the empirical Bayes approach was first introduced, and for some time there-
after, it seemed that application of the methods to real world data would not ofien be
feasible because of computational difficulties and the possibility that a very large number
of component populations might be needed before approximately optimal results could be
obtained. Indeed, one advantage of the parametric approach, or the restriction to linear
forms of estimation, is the increased capacity to deal with real data sets of modest size at
the cost of some potential loss of asymptotic efficiency. The original version of the fully
nonparametric methodology (Johns, 1857) with which this paper is principally concerned,
was of little practical use in a world where large scale digital computers had barely appeared
on the scene. Fortunately, the present widespread availability of computational power and
the development of sophisticated statistical software has opened up new possibilities.

One of the central requirements for dealing with the fully nonparametric empirical
Bayes problem is the estimation of a conditional expectation function of unknown form

involving several variables. In the original paper (Johns, 1957) a pointwise consistent

2
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estimator was proposed based on successive refinements of a partition of d-dimensioral
space. A convergence result (Lemma 5), which in a later incarnation has become known
as the generalized Lebesgue dominated convergence theorem, was then used to show con-
vergence to the Bayes optimal risk for the proposed empirical Bayes estimator. Some of
these results could be regarded as primitive precursors of the more recent work of Stone
(1981). In the last few years several other sophisticated methods for the nonparametric
estimation of conditional expectation (regression) have been proposed. These include ker-
nal smoothers, nearest neighbor estimates, recursive partitioning, and, notably, projection
pursuit regression as proposed by Friedman and Stuetzle (1981). A comprehensive dis-
cussion of projection pursuit methods may be found in Huber (1985) where it is noted
that, almost alone amoung multivariate procedures, they avoid many cf the difficulties
associated with high dimensionality and the presence of uninformative observations.

In the present study ihe regression aspect of the fully nonparametric empirical Bayes
estimation procedure has been dealt with by substituting a projection pursuit regression
scheme for the original conditional expectation estimator. The particular algorithm used
is called The Smooth Multiple Additive Regression Technique (SMART) and is detailed
in Friedman (1984). In section 2 the problem and the proposed solution are described
more formally. In section 3 the proposed method is applied to several data sets gener-
ated by computer simulation and the results are discussed. The method is also applied
to the famous Efron-Morris baseball data. Section 4 contains concluding remarks and

acknowledgements.

2. The Problem and the Proposed Method.

We consider m populations from each of which n observations are obtained. Let these

obser.ations be given by
Xi; = the sth observation from the jth population,

1=12,.,n J=12,.,m.

We assume that for each j the X;;’s are iid with common random cdf F}, where

F\,F,, ..., F,, are assumed to be selected independently according to some unknown prior
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%, probability measure over all cdf’s. Let T(F) = a real-valued functional defined on all
f‘cﬁ.'. cdf’s which represents the “parameter” to be estimated for each population subject to
- squared-error loss, i.e., §; = T(F}), and for any estimator §; the loss incurred is (6, — 9,)3.
f“‘ If 6 = (8,,02,...,.0m) and § = (51,52,...,§m) then the average loss for the m component

populations is

G  DOOAK

' (1) L(8,6) = (8§ — 6)(6 - 6)' /m.
\”'3 The corresponding average risk is then
g
(2) R(6) = E{L(4,6)},
.- where the expectation operator E reflects the randomness in the selection of the Fj’s as
5

well as the X;;’s. Initially, we consider functionals of the form

%

(3) T(F) = Er {h(X)},

‘.‘ .

‘A .’.‘ -.‘. o
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where h(-) is a specified function and X has cdf F. For example, if the quantity we wish
to estimate is the mean of F we would set
[« <]
T(F) =/ z dF(z).
—00
In section 4 we indicate a method for dealing with more general functionals.
We observe that for each j, the Bayes optimal ~stimate of ; = T'(Fy) under squared-

error loss is

8; = E{6;1Xi;,1 < i< n}.

: If the observation X}, is omitted from the data for the jth population for some &, 1 < k <
: n, then the corresponding Bayes essimator for 4, is

3 (k) = B{0,1X:j,1 <5 S myi # B,

x = E(E(h(Xu)|F;}|Xej01 <1< nyi # k),

l. (4) = E{h(Xe3)| Xij,1 <3 < nyi # k),

U (X1 i< nyi # k).
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where ¢ is a fixed symmetric function of n—1 arguments independent of 5 and k. Since ¢ is
a conditional expectation function, it may be estimated using any suitable nonparemetric
regression method applied to the data from all m populations. To make maximum use of

the information available for the estimation of ¢, we may organize the mn observations as

follows:
“Dependent® “Independent”
h(X1,) X2, X3, ... Xn1
h(Xz1) Xy, Xay, ..o Xm
k(Xa1) X1, Xa1, -3 Xn—11
h(xn) X22) Xs?: see 1Xn2
(5) h(xnm) le, sza v )Xu—l,m

Because of the symmetry of the function ¢ we should increase this list by including all
permutations of the “independent® values, but this may be avoided by first ordering the
observations from each population so that X;; < X3; < ... £ X,; for each 5. This, of
course, leads to a different (nonsymmetric) regression function, say ¢, which is defined
cnly for ordered arguments but contains the same information as ¢. Henceforth, we shall
assume that the X,;’s are ordered in this fashion. If tZ:,,. represents a suitable nonparametric
regression estimate of ¢ based on the available data, then the proposed empirical Bayes

estimator of §; is

-

(6) 85 = %

(-

'z'm(xt'j’l < 1 S ”)" # k))

.
1]

1

for j = 1,2,...,m. The averaging over n values of ¢ indicated in (6) results in a slight
improvement in the performance of the estimator (see (2.47), p.656 of Johus, 1957).
The original formulation of the fully nonparametric empirical Bayes estimation prob-

lem considered the component problems in sequence and concentrated on the risk for the
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mth problem using the estimated conditional expectation based on the data from the pre-

. A

vious m — 1 problems. Strictly speaking, the original asymptotic optimality result applies

C o

to the present case only if we modify the procedure indicated above go that for each j the
estimate of ¢ involves only data from the other m — 1 component problems. Then, for the
modified procedure and the original partition estimate of ¢, if we let f be the vector of

6’ given by (6) the following result holds:

THEOREM (Johns, 1957) If E{h?(X)} < co, then .
(7) Rn < ml'Lle Rﬂ(g) < Rn—l

where R, = the Bayes optimal risk for a component problem with sample size n, and

R, (f) is the average risk using the empirical Bayes estimator § where the sample size is

for each component problem. *
The modified procedure is too cumbersome for application to actual data since it

entails repeated estimation of the function ¢. It seems plausible that (7) will kold for ihe

unmodified procedure based on any well behaved estimator of the function ¢ for which the

pointwise convergence in probability to ¥ as m becomes large is asymptotically unaffected

by the values of the X;;’s for any fixed j.
In applications, if n is large and m is not very large, the estimate of JJ,,, may be unstable

and it may be desirable to substitute a summary statistic of lower dimension for the n — 1 |

arguments of . If this summary statistic is well chosen the resulting loss of asymptotic

efficiency may be slight. One possibility would be to replace the conditioning X;;'s by a

o s

two dimensional statistic consisting of robust estimators of location and scale. In some of
the examples considered in the present paper, a less drastic reduction in dimension has

been obtained by replacing the n — 1 ordered X;, s by d averages of s successive ordered

"r‘"‘t"‘f‘ﬁ_t i. P

values where ds = n — 1. It may be shown (see, e.g., Johns 1974) that such averages
of blocks cf order statistics retain most of the sample information about the underlying

distribution.

VY Y

As was mentioned in the introduction, the method used to estimate the required
conditional expectation in the present study is the SMART algorithm of Friedman (1984). i

Given a number of iid observations of a dependent variable Y and the ccrresponding values

\
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of “independent® variables X, X, ..., X, the algorithm estimates E{Y|X;, X;,..., X,}

nonparametrically by an expression of the form
s
(8) 2 Brfr(aX'),
r=1

where X = (X, X3,...,,X,) and a = (a;,4a3,...,a5). The a;’s, and the furctions f, () are
suitably normalized to avoid identifiability difficulties. The a;’s, 8,’s, fr ()’s and number
of terms in (8) are chosen to satisfy a least squares criterion, where the functions are

generated by a variable span smoother.

3. Examples.

The proposed nonparametric empirical Bayes estimation procedure incorporating the
SMART algorithm as implemented on a VAX11/750 computer was applied to six sets of
simulated data and one set of real data. For each example, the quantities being estimated
( i.e., the 6,’s) are the means of the component populations. The simulated data sets
consist in each case of either 50 or 100 component populations. These numtbers are perkaps
larger than would be expected in some applications to real world data but were chosen
to yield reasonably stable and interpretable results. The sample sizes associated with the
component problems are 5 or 6 for the 100 component cases and 11 for the 50 component
cases.

The conditional distributions are either normnl with mean = 6 and standard deviaticn
= o, or logistic with mean = & and scale = . The prior distributions for § are ecither
normal with mean = pu and standard deviation = r, or the longtailed distribution having
density

V2

(9) g(0) = T+ 09

This distribution has mean = 0 and standard deviation = 1. For two examples the scale
parameter o for the conditional distribution was chosen randomly from three possible
values. The summary statistic on which the predicted values of @ are based is either all

n — 1 available observations or, for n = 11, the set of five averages of two adjacent order
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statistics. The setup for each of the six cases simulated is given in Table 1.

Case

Label Distr. Distr. Pops. Size Mean S.D. Scale* Statist.
(for6) (m) () (u) (1) (o)

(2) Normal Normal 100 5 25 2 2,46 all 4o0bs.

(b) Normal Normal 100 5 25 2 4  all 4 obs.

(c) Normal Normal 50 11 25 2 6 5 avgs.

(d) Normal Longtzil 100 5 0 1 2 all4o0bs.

(e) Logistic ~Normal 100 6 0o 2 3 all 5 obs.

(f) Logistic Longtail 50 11 0 1 456 5 avgs.

* Each value has equal prior probability and is independent of 6.

TABLE 2
Summary of the Simulation Results
Case Conditional Prior Bayes Asymptotic Observed Observed
Label Distr.  Distr. Opt. Risk BLUE M.S.E. BLUE MS.E. EB M.S.E.
(for 8)  (Approx.)

(a) Normal Normal* 1.67 3.73 4.29 1.98
(b) Normal Normal 1.78 3.20 3.32 1.57
(c) Normal Normal 1.80 3.27 3.38 2.58
(d) Normal Longtail 0.44 0.80 0.69 '0.45
()  Logistic Normal 2.12 4.50 4.50 2.69
() Logistic Longtail* 0.86 7.00 6.98 3.40

Conditional Prior

TABLE 1

Cases Simulated

No.of Sample Prior Prior Cond. Summary

* The values of sigma are selected randomly from among three values.

The numerical results obtained from the six simulations are summarized in Table 2.

The last column shows the actual mean squared error (M.S.E.) produced by the fully
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nonparametric empirical Bayes procedure. For comparison purposes both the average ob-
served variances and the true (asymptotic) variances for the best linear unbiased estimators
(BLUE’s) are shown. For the normal cases, of course, the BLUE is simply the sample mean.
Approximate values for the Bayes optimal risk are also given. These are based on linear
Bayes estimators and asymptotic variances so they are only exact for cases (b) and (c)
where both the conditional and the prior distributions are normal. It is encouraging to
note that the empirical Bayes M.S.E. is substantially smaller than the BLUE variance for
each of the examples. Furthermore, the empirical Bayes M.S.E. is in the vicinity of the
Bayes optimal risk for all cases but one (example (f)).

The actual regression functions produced by the SMART algorithm are plotted in
Figures 1 and 2. In all cases the algorithm concluded that only a single function f; was
required in expression (7) for an adequate description of the data. When interpreting the
plots it should be borne in mind that a different direction vector a is associated with each

function. The vector X represents the appropriate set of “independent” variables.

FIGURE 1

SMART Regression Functions
32
30 1

(a)
(c)
28 _
(b)
26 [
24
22 |
20 ] I 1 L
10 20 30 40 850 80
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FIGURE 2
SMART Regression Functions
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We observe that the plots are quite linear for all cé.ses with normal conditiéna.l dis-
tributions but distinctly nonlinear for the logistic cases. It was thought that example (a)
might yield a nonlinear regression because of the random prior on ¢. A numerical calcu-
lation of the actual conditional expectation of the mean given the sample mean and the
sample variance verified that the regression surface was in fact fairly linear. A plot of this
surface evaluated at a set of grid points is shown in Figure 3.

An actual real world data set was also analyzed using the fully nonparametric em-
pirical Bayes scheme. TLe data was obtained from Efron-Morris (1975) and consists of
the batting averages for 18 major league baseball players for their first 45 times at bat
and their averages for the remainder of the season which represent the ‘true’ values one
wishes to predict. Efron-Morris first transform the data to approximate normality using
the arcsine transformation. They then compute the Stein estimator (Stein, 1955) and their
own proposed estimator based on a linear empirical Bayes formula modified to limit the
maximum component risk. The results are thien converted back to proportions. For the

present study the data was considered in its original form as a set of Bernoulli observations

10
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Conditional Mean = w

N
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u=) X, v=3 (X; -Y)"

(hits or non-hits) and the fully nonparametric empirical Bayes method was applied. The

.
AU s R TV R YT AT AR LY Y, T

results are shown in Table 3. The third column gives the maximum likelihood estimate
(MLE) which is just the observed proportion of hits in the first 45 at bats. The nonpara-
metric empirical Bayes estimate is given in the fourth column and Siein’s estimate in the
fifth. The Efron-Morris limited risk estimate with index .8 is given in the last column.

The corresponding mean squarsd errors of prediction are shown in the last row.

11
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s | TABLE 3 ‘1
Batting Averages and Their Estimates :
; i ‘TRUE’MLE NP-EBSTEIN EMEST(.8) "
¢ 1  .346 400 .306 .200 .351 1
- 2 208 .378 .203 286  .329 d
e 3 .276 .35 .281 281  .308
4 222 333 260 277 287 :
= 5 273 311 256 273 273 :
. 6 .270 .311 .256 .273  .273 ’
7 263 .280 247 .268  .268 t
8 210 .267 247 264  .264
9 260 .244 .254 250  .259 7
10 230 244 254 250 250
X 11 .264 .222 258 .254  .254 :
12 .256 .222 .258 .254  .254 1

=) 13 303 .222 .258 .254  .254 n
3 14 264 222 258 254  .254 t
3 15  .226 .222 258 .254  .254 &'
S 16  .285 .200 .266 .249  .242 :‘
- 17 316 178 274 244 218 4
18 .200 .156 .283 .239  .194 g
: MS.E. 00419 .00105 .00120 .00139
" We observe that the procedure proposed in this study has the smallest mean squared "
: error of prediction and does bétter than the Efron-Morris estimator in three out of the 13
‘g five cases (i = 1,2,3,17,18) where their procedure limits the risk. The highly nonlinear :
'.: regression function which SMART produces for this case is plotted in Figure 4. The :§
',; abscissa of this figure is a linear function of the number of hits in 44 at bats. :{
. b
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¥ ¢

SR TAR FAE S s

A S D R A A R P T R AT S

»,
>



Fata a2 5 .8
Tyor . v
L2

LR
R .

e =
'
(.l."’d"'

S B ™ S - M el o e i B aanng o e AN a2 dest A ol o g i

FIGURE 4
SMART Regression Function
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4. Concluding Remarks.

The estimation procedures discussed here may be modified and generalized in various
ways. We may expect that ever more sophisticated nonparametric regression methods will
be developed. Such procedures may then be substituted for the projection pursuit part
of the scheme. The empirical Bayes problem described here assumes equal sample sizes
for all component populations. The case of unequal sample sizes may be dealt with by
various ad hoc methods some of which are discussed in the original paper (Johns, 1957).

‘The question of the best way to proceed in such cases is still open.

In the preceding sections the quantities to be estimated were required to be represented
as functionals of the form (3). However, within this framework we may estimate the
conditional cdf F(t) for any fixed ¢ by letting A(z) = the indicator function of the interval
(—o0,t]. Since F(t) can be recaptured, it should be possible modify the procedure to

13
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permit the estimation other functionals T'(F') such as, e.g., the median of F.

As is true of most empirical Bayes problems, the present one may be reinterpreted
as a compound decision problem by dropping the assumption of the existence of a prior
probability distribution, and replccing it with a suitable empirical distribution of unknown
quantities. In the present case these quantities are the component cdf’s Fy, Fy, ..., Fin.
Presumably results paralleling the empirical Bayes results would be forthcoming here as
in previously considered problems. (See Robbins (1951) for the original formulation of the
key ideas and Gilliland (1968) and Johns (1967) for some further developments.)

The SMART algorithm used in the applications considered in this study requires the
specification of certain operating parameters. The most significant of these was found to
be the span parameter ccntrolling the variable span smoother. This was assigned a value
of either 0.6 or 0.7 for all of the examples considered.

Finally, the author wishes to express his thanks to David J. Pasta who rendered

invaluable assistance in the application of the SMART algorithm to the data of this study.
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